Multi-marker metabarcoding of coral skeletons reveals a rich microbiome and diverse evolutionary origins of endolithic algae
نویسندگان
چکیده
Bacteria, fungi and green algae are common inhabitants of coral skeletons. Their diversity is poorly characterized because they are difficult to identify with microscopy or environmental sequencing, as common metabarcoding markers have low phylogenetic resolution and miss a large portion of the biodiversity. We used a cost-effective protocol and a combination of markers (tufA, 16S rDNA, 18S rDNA and 23S rDNA) to characterize the microbiome of 132 coral skeleton samples. We identified a wide range of prokaryotic and eukaryotic organisms, many never reported in corals before. We additionally investigated the phylogenetic diversity of the green algae-the most abundant eukaryotic member of this community, for which previous literature recognizes only a handful of endolithic species. We found more than 120 taxonomic units (near species level), including six family-level lineages mostly new to science. The results suggest that the existence of lineages with an endolithic lifestyle predates the existence of modern scleractinian corals by ca. 250my, and that this particular niche was independently invaded by over 20 lineages in green algae evolution. These results highlight the potential of the multi-marker approach to assist in species discovery and, when combined with a phylogenetic framework, clarify the evolutionary origins of host-microbiota associations.
منابع مشابه
Reference datasets of tufA and UPA markers to identify algae in metabarcoding surveys
The data presented here are related to the research article "Multi-marker metabarcoding of coral skeletons reveals a rich microbiome and diverse evolutionary origins of endolithic algae" (Marcelino and Verbruggen, 2016) [1]. Here we provide reference datasets of the elongation factor Tu (tufA) and the Universal Plastid Amplicon (UPA) markers in a format that is ready-to-use in the QIIME pipelin...
متن کاملEndolithic algae: an alternative source of photoassimilates during coral bleaching.
Recent reports of worldwide coral bleaching events leading to devastating coral mortality have caused alarm among scientists and resource managers. Differential survival of coral species through bleaching events has been widely documented. We suggest that among the possible factors contributing to survival of coral species during such events are endolithic algae harboured in their skeleton, pro...
متن کاملCoral Endolithic Algae: Life in a Protected Environment!
Endolithic algae inhabiting skeletons of living corals appear to be adapted to an extreme environment created by the coral. However, measurements on three coral species from the genus Porites revealed that these corals provide several modes of protection to the algae as well. High concentrations of ultraviolet (UV)-absorbing compounds, mycosporine-like amino acids (MAAs), were found in the tiss...
متن کاملOcean acidification and warming scenarios increase microbioerosion of coral skeletons.
Biological mediation of carbonate dissolution represents a fundamental component of the destructive forces acting on coral reef ecosystems. Whereas ocean acidification can increase dissolution of carbonate substrates, the combined impact of ocean acidification and warming on the microbioerosion of coral skeletons remains unknown. Here, we exposed skeletons of the reef-building corals, Porites c...
متن کامل13C and 15N assimilation and organic matter translocation by the endolithic community in the massive coral Porites lutea
Corals evolved by establishing symbiotic relationships with various microorganisms (the zooxanthellae, filamentous algae, cyanobacteria, bacteria, archaea, fungi and viruses), forming the 'coral holobiont'. Among them, the endolithic community is the least studied. Its main function was considered to be translocation of photo-assimilates to the coral host, particularly during bleaching. Here, w...
متن کامل